Johns Hopkins earthquake engineer and cold-formed steel researcher Ben Schafer introduces the NHERI CFS10 project underway at the NHERI UC San Diego shake table facility. Tara Hutchinson, Schafer’s co-PI on the project, is a research engineer at UC San Diego. (We will meet Hutchinson in an upcoming episode.) The CFS10 shake table experiment caps off a long-term collaboration between NSF researchers and industry. The goal: to understand seismic performance of taller cold-formed steel buildings. The structure on the shake table mimics an apartment building or hotel; it exceeds current height and system limits – which will help the team understand how far engineers can go designing for CFS structural elements, subsystems, and non-structural elements, like stairs, gas lines and sprinkler systems. The CFS10 shake table tests are slated for early June, 2025. Follow along on the UCSD live cameras: https://nheri.ucsd.edu/live-cams
--------
18:41
Stealthy strength of cold-formed steel
The seemingly outsized strength of cold-formed steel is not well-known. In this episode, earthquake engineer Ben Schafer, Johns Hopkins University, describes a research-industry collaboration with the automotive industry resulting in code changes for high-strength sheet-steel. Sheet steel has also been successfully tested in flooring systems. The upcoming CFS10 shake table test at UC San Diego is the high-rise building test for cold-formed steel. Schafer addresses misconceptions that structural engineers have regarding CFS: Basically: cold-formed steel looks too thin to be strong. However, with high-strength sheet steel, deformations do not correlate to lack of strength, which is something that automotive and aircraft engineers have long understood.
--------
6:33
Intro to cold-formed steel as resilient framing material
Meet Johns Hopkins University engineer Ben Schafer, authority on cold-formed steel (CFS), also known as sheet steel or thin steel. Schafer explains that CFS is both strong and ductile – and therefore a remarkably high-performance structural framing material. Builders use CFS in a variety of ways – including as building-frame members, much like timber. Schafer’s research centers on CFS as structural framing to resist wind and earthquake loading. Thin and lightweight, CFS members comprise relatively little material; in the US, all cold-formed steel is made from recycled materials.
--------
11:35
The Future of Wildfire Mitigation
Research engineer Erica Fischer wraps up by noting that engineers, such as those in the NSF NHERI natural hazards community, are working on multiple fronts to leverage their skills and knowledge to reduce damage from future urban-wildland conflagrations.Follow Erica Fischer on LinkedIn:https://www.linkedin.com/in/fischererica/And on the X platform:https://x.com/erica_fischer
--------
6:04
Homeowners Can Mitigate Wildfire Risk
On the policy level, states first must define and map the wildland-urban interface; then states formally define risk-categories and mitigations required. Examples: clearing combustible material within five feet around the house and updating roof and siding with non-combustible materials. Fischer details these steps and ways research engineers seek to simplify risk-reduction for homeowners.
We all have experienced natural hazards in our lives: earthquakes, hurricanes, tornadoes, tsunami, floods: they impact our society at the most fundamental levels. Through rigorous testing and outreach programs, the team at the Natural Hazards Engineering Research Infrastructure is committed to making sure the next natural hazard doesn't have to be a disaster for you and your family. From the National Science Foundation and the Natural Hazards Engineering Research Infrastructure: This is DesignSafe radio!