Powered by RND
PodcastsScienceData Science Decoded
Listen to Data Science Decoded in the App
Listen to Data Science Decoded in the App
(524)(250,057)
Save favourites
Alarm
Sleep timer

Data Science Decoded

Podcast Data Science Decoded
Mike E
We discuss seminal mathematical papers (sometimes really old 😎 ) that have shaped and established the fields of machine learning and data science as we know th...
More

Available Episodes

5 of 19
  • Data Science #19 - The Kullback–Leibler divergence paper (1951)
    In this episode with go over the Kullback-Leibler (KL) divergence paper, "On Information and Sufficiency" (1951). It introduced a measure of the difference between two probability distributions, quantifying the cost of assuming one distribution when another is true. This concept, rooted in Shannon's information theory (which we reviewed in previous episodes), became fundamental in hypothesis testing, model evaluation, and statistical inference. KL divergence has profoundly impacted data science and AI, forming the basis for techniques like maximum likelihood estimation, Bayesian inference, and generative models such as variational autoencoders (VAEs). It measures distributional differences, enabling optimization in clustering, density estimation, and natural language processing. In AI, KL divergence ensures models generalize well by aligning training and real-world data distributions. Its role in probabilistic reasoning and adaptive decision-making bridges theoretical information theory and practical machine learning, cementing its relevance in modern technologies.
    --------  
    52:41
  • Data Science #18 - The k-nearest neighbors algorithm (1951)
    In the 18th episode we go over the original k-nearest neighbors algorithm; Fix, Evelyn; Hodges, Joseph L. (1951). Discriminatory Analysis. Nonparametric Discrimination: Consistency Properties USAF School of Aviation Medicine, Randolph Field, Texas They introduces a nonparametric method for classifying a new observation 𝑧 z as belonging to one of two distributions, 𝐹 F or 𝐺 G, without assuming specific parametric forms. Using 𝑘 k-nearest neighbor density estimates, the paper implements a likelihood ratio test for classification and rigorously proves the method's consistency. The work is a precursor to the modern 𝑘 k-Nearest Neighbors (KNN) algorithm and established nonparametric approaches as viable alternatives to parametric methods. Its focus on consistency and data-driven learning influenced many modern machine learning techniques, including kernel density estimation and decision trees. This paper's impact on data science is significant, introducing concepts like neighborhood-based learning and flexible discrimination. These ideas underpin algorithms widely used today in healthcare, finance, and artificial intelligence, where robust and interpretable models are critical.
    --------  
    44:01
  • Data Science #17 - The Monte Carlo Algorithm (1949)
    We review the original Monte Carlo paper from 1949 by Metropolis, Nicholas, and Stanislaw Ulam. "The monte carlo method." Journal of the American statistical association 44.247 (1949): 335-341. The Monte Carlo method uses random sampling to approximate solutions for problems that are too complex for analytical methods, such as integration, optimization, and simulation. Its power lies in leveraging randomness to solve high-dimensional and nonlinear problems, making it a fundamental tool in computational science. In modern data science and AI, Monte Carlo drives key techniques like Bayesian inference (via MCMC) for probabilistic modeling, reinforcement learning for policy evaluation, and uncertainty quantification in predictions. It is essential for handling intractable computations in machine learning and AI systems. By combining scalability and flexibility, Monte Carlo methods enable breakthroughs in areas like natural language processing, computer vision, and autonomous systems. Its ability to approximate solutions underpins advancements in probabilistic reasoning, decision-making, and optimization in the era of AI and big data.
    --------  
    38:11
  • Data Science #16 - The First Stochastic Descent Algorithm (1952)
    In the 16th episode we go over the seminal the 1952 paper titled: "A stochastic approximation method." The annals of mathematical statistics (1951): 400-407, by Robbins, Herbert and Sutton Monro. The paper introduced the stochastic approximation method, a groundbreaking iterative technique for finding the root of an unknown function using noisy observations. This method enabled real-time, adaptive estimation without requiring the function’s explicit form, revolutionizing statistical practices in fields like bioassay and engineering. Robbins and Monro’s work laid the ideas behind stochastic gradient descent (SGD), the primary optimization algorithm in modern machine learning and deep learning. SGD’s efficiency in training neural networks through iterative updates is directly rooted in this method. Additionally, their approach to handling binary feedback inspired early concepts in reinforcement learning, where algorithms learn from sparse rewards and adapt over time. The paper's principles are fundamental to nonparametric methods, online learning, and dynamic optimization in data science and AI today. By enabling sequential, probabilistic updates, the Robbins-Monro method supports adaptive decision-making in real-time applications such as recommender systems, autonomous systems, and financial trading, making it a cornerstone of modern AI’s ability to learn in complex, uncertain environments.
    --------  
    42:20
  • Data Science #15 - The First Decision Tree Algorithm (1963)
    the 15th episode we went over the paper "Problems in the Analysis of Survey Data, and a Proposal" by James N. Morgan and John A. Sonquist from 1963. It highlights seven key issues in analyzing complex survey data, such as high dimensionality, categorical variables, measurement errors, sample variability, intercorrelations, interaction effects, and causal chains. These challenges complicate efforts to draw meaningful conclusions about relationships between factors like income, education, and occupation. To address these problems, the authors propose a method that sequentially splits data by identifying features that reduce unexplained variance, much like modern decision trees. The method focuses on maximizing explained variance (SSE), capturing interaction effects, and accounting for sample variability. It handles both categorical and continuous variables while respecting logical causal priorities. This paper has had a significant influence on modern data science and AI, laying the groundwork for decision trees, CART, random forests, and boosting algorithms. Its method of splitting data to reduce error, handle interactions, and respect feature hierarchies is foundational in many machine learning models used today. Link to full paper at our website: https://datasciencedecodedpodcast.com/episode-15-the-first-decision-tree-algorithm-1963
    --------  
    36:35

More Science podcasts

About Data Science Decoded

Podcast website

Listen to Data Science Decoded, Radiolab and many other podcasts from around the world with the radio.net app

Get the free radio.net app

  • Stations and podcasts to bookmark
  • Stream via Wi-Fi or Bluetooth
  • Supports Carplay & Android Auto
  • Many other app features

Data Science Decoded: Podcasts in Family

Radio
Social
v6.30.1 | © 2007-2024 radio.de GmbH
Generated: 12/7/2024 - 5:39:59 PM