Powered by RND
PodcastsScienceData Skeptic

Data Skeptic

Kyle Polich
Data Skeptic
Latest episode

Available Episodes

5 of 574
  • The Network Diversion Problem
    In this episode, Professor Pål Grønås Drange from the University of Bergen, introduces the field of Parameterized Complexity - a powerful framework for tackling hard computational problems by focusing on specific structural aspects of the input. This framework allows researchers to solve NP-complete problems more efficiently when certain parameters, like the structure of the graph, are "well-behaved". At the center of the discussion is the network diversion problem, where the goal isn’t to block all routes between two points in a network, but to force flow - such as traffic, electricity, or data - through a specific path. While this problem appears deceptively similar to the classic "Min.Cut/Max.Flow" algorithm, it turns out to be much harder and, in general, its complexity is still unknown. Parameterized complexity plays a key role here by offering ways to make the problem tractable under constraints like low treewidth or planarity, which often exist in real-world networks like road systems or utility grids. Listeners will learn how vulnerability measures help identify weak points in networks, such as geopolitical infrastructure (e.g., gas pipelines like Nord Stream). Follow out guest: Pål Grønås Drange
    --------  
    46:14
  • Complex Dynamic in Networks
    In this episode, we learn why simply analyzing the structure of a network is not enough, and how the dynamics - the actual mechanisms of interaction between components - can drastically change how information or influence spreads.  Our guest, Professor Baruch Barzel of Bar-Ilan University, is a leading researcher in network dynamics and complex systems ranging from biology to infrastructure and beyond.  BarzelLab BarzelLab on Youtube Paper in focus: Universality in network dynamics, 2013
    --------  
    56:00
  • Github Network Analysis
    In this episode we'll discuss how to use Github data as a network to extract insights about teamwork. Our guest, Gabriel Ramirez, manager of the notifications team at GitHub, will show how to apply network analysis to better understand and improve collaboration within his engineering team by analyzing GitHub metadata - such as pull requests, issues, and discussions - as a bipartite graph of people and projects. Some insights we'll discuss are how network centrality measures (like eigenvector and betweenness centrality) reveal organizational dynamics, how vacation patterns influence team connectivity, and how decentralizing communication hubs can foster healthier collaboration.  Gabriel’s open-source project, GH Graph Explorer, enables other managers and engineers to extract, visualize, and analyze their own GitHub activity using tools like Python, Neo4j, Gephi and LLMs for insight generation, but always remember – don't take the results on face value. Instead, use the results to guide your qualitative investigation. 
    --------  
    36:46
  • Networks and Complexity
    In this episode, Kyle does an overview of the intersection of graph theory and computational complexity theory.  In complexity theory, we are about the runtime of an algorithm based on its input size.  For many graph problems, the interesting questions we want to ask take longer and longer to answer!  This episode provides the fundamental vocabulary and signposts along the path of exploring the intersection of graph theory and computational complexity theory.
    --------  
    17:49
  • Actantial Networks
    In this episode, listeners will learn about Actantial Networks—graph-based representations of narratives where nodes are actors (such as people, institutions, or abstract entities) and edges represent the actions or relationships between them.  The one who will present these networks is our guest Armin Pournaki, a joint PhD candidate at the Max Planck Institute for Mathematics in the Sciences and the Laboratoire Lattice (ENS-PSL), who specializes in computational social science, where he develops methods to extract and analyze political narratives using natural language processing and network science.  Armin explains how these methods can expose conflicting narratives around the same events, as seen in debates on COVID-19, climate change, or the war in Ukraine. Listeners will also discover how this approach helps make large-scale discourse—from millions of tweets or political speeches—more transparent and interpretable, offering tools for studying polarization, issue alignment, and narrative-driven persuasion in digital societies. Follow our guest Armin Pournaki's Webpage Twitter/X Bluesky Papers in focus How influencers and multipliers drive polarization and issue alignment on Twitter/X, 2025 A graph-based approach to extracting narrative signals from public discourse, 2024  
    --------  
    37:34

More Science podcasts

About Data Skeptic

The Data Skeptic Podcast features interviews and discussion of topics related to data science, statistics, machine learning, artificial intelligence and the like, all from the perspective of applying critical thinking and the scientific method to evaluate the veracity of claims and efficacy of approaches.
Podcast website

Listen to Data Skeptic, Show Me the Science with Luke O'Neill and many other podcasts from around the world with the radio.net app

Get the free radio.net app

  • Stations and podcasts to bookmark
  • Stream via Wi-Fi or Bluetooth
  • Supports Carplay & Android Auto
  • Many other app features

Data Skeptic: Podcasts in Family

Social
v7.20.1 | © 2007-2025 radio.de GmbH
Generated: 7/7/2025 - 1:27:45 AM