Powered by RND
PodcastsTechnologyExperiencing Data w/ Brian T. O’Neill (UX for AI Data Products, SAAS Analytics, Data Product Management)

Experiencing Data w/ Brian T. O’Neill (UX for AI Data Products, SAAS Analytics, Data Product Management)

Brian T. O’Neill from Designing for Analytics
Experiencing Data w/ Brian T. O’Neill  (UX for AI Data Products, SAAS Analytics, Data Product Management)
Latest episode

Available Episodes

5 of 100
  • 168 - 10 Challenges Internal Data Teams May Face Building Their First Revenue-Generating Data Product
    Today, I am going to share some of the biggest challenges internal enterprise data leaders may face when creating their first revenue-generating data product. If your team is thinking about directly monetizing a data product and bringing a piece of software to life as something customers actually pay for, this episode is for you. As a companion to this episode, you can read my original article on this topic here once you finish listening!
    --------  
    38:24
  • 167 - AI Product Management and Design: How Natalia Andreyeva and Team at Infor Nexus Create B2B Data Products that Customers Value
    Today, I’m talking with Natalia Andreyeva from Infor about AI / ML product management and its application to supply chain software. Natalia is a Senior Director of Product Management for the Nexus AI / ML Solution Portfolio, and she walks us through what is new, and what is not, about designing AI capabilities in B2B software. We also got into why user experience is so critical in data-driven products, and the role of design in ensuring AI produces value. During our chat, Natalia hit on the importance of really nailing down customer needs through solid discovery and the role of product leaders in this non-technical work. We also tackled some of the trickier aspects of designing for GenAI, digital assistants, the need to keep efforts strongly grounded in value creation for customers, and how even the best ML-based predictive analytics need to consider UX and the amount of evidence that customers need to believe the recommendations. During this episode, Natalia emphasizes a huge key to her work’s success: keeping customers and users in the loop throughout the product development lifecycle.   Highlights/ Skip to What Natalia does as a Senior Director of Product Management for Infor Nexus (1:13) Who are the people using Infor Nexus Products and what do they accomplish when using them (2:51) Breaking down who makes up Natalia's team (4:05) What role does AI play in Natalia's work? (5:32) How do designers work with Natalia's team? (7:17) The problem that had Natalia rethink the discovery process when working with AI and machine learning applications (10:28) Why Natalia isn’t worried about competitors catching up to her team's design work (14:24) How Natalia works with Infor Nexus customers to help them understand the solutions her team is building (23:07) The biggest challenges Natalia faces with building GenAI and machine learning products (27:25) Natalia’s four steps to success in building AI products and capabilities (34:53) Where you can find more from Natalia (36:49)   Quotes from Today’s Episode “I always launch discovery with customers, in the presence of the UX specialist [our designer]. We do the interviews together, and [regardless of who is facilitating] the goal is to understand the pain points of our customers by listening to how they do their jobs today. We do a series of these interviews and we distill them into the customer needs; the problems we need to really address for the customers. And then we start thinking about how to [address these needs]. Data products are a particular challenge because it’s not always that you can easily create a UX that would allow users to realize the value they’re searching for from the solution. And even if we can deliver it, consuming that is typically a challenge, too. So, this is where [design becomes really important]. [...] What I found through the years of experience is that it’s very difficult to explain to people around you what it is that you’re building when you’re dealing with a data-driven product. Is it a dashboard? Is it a workboard? They understand the word data, but that’s not what we are creating. We are creating the actual experience for the outcome that data will deliver to them indirectly, right? So, that’s typically how we work.” - Natalia Andreyeva (7:47) “[When doing discovery for products without AI], we already have ideas for what we want to get out. We know that there is a space in the market for those solutions to come to life. We just have to understand where. For AI-driven products, it’s not only about [the user’s] understanding of the problem or the design, it is also about understanding if the data exists and if it’s feasible to build the solution to address [the user’s] problem. [Data] feasibility is an extremely important piece because it will drive the UX as well.” - Natalia Andreyeva (10:50) “When [the team] discussed the problem, it sounded like a simple calculation that needed to be created [for users]. In reality, it was an entire process of thinking of multiple people in the chain [of command] to understand whether or not a medical product was safe to be consumed. That’s the outcome we needed to produce, and when we finally did, we actually celebrated with our customers and with our designers. It was one of the most difficult things that we had to design. So why did this problem actually get solved, and why we were the ones who solved it? It’s because we took the time to understand the current user experience through [our customer] interviews. We connected the dots and translated it all into a visual solution. We would never be able to do that without the proper UX and design in that place for the data.” - Natalia Andreyeva (13:16) “Everybody is pressured to come up with a strategy [for AI] or explain how AI is being incorporated into their solutions and platform, but it is still essential for all of my peers in product management to focus on the value [we’re] creating for customers. You cannot bypass discovery. Discovery is the essential portion where you have to spend time with your customers, champions, advisors, and their leads, but especially users who are doing this [supply chain] job every single day—so we understand where the pain point really is for them, we solve that pain, and we solve it with our design team as a partner, so that solution can surface value. ” - Natalia Andreyeva (22:08) “GenAI is a new field and new technology. It’s evolving quickly, and nobody really knows how to properly adapt or drive the adoption of AI solutions. The speed of innovation [in the AI field] is a challenge for everybody. People who work on the frontlines (i.e. product, engineering teams), have to stay way ahead of the market. Meanwhile, customers who are going to be using these [AI] solutions are not going to trust the [initial] outcomes. It’s going to take some time for people to become comfortable with them. But it doesn’t mean that your solution is bad or didn’t find the market fit. It’s just not time for your [solution] yet. Educating our users on the value of the solution is also part of that challenge, and [designers] have to be very careful that solutions are accessible. Users do not adopt intimidating solutions.” - Natalia Andreyeva (27:41) “First, discovery—where we search for the problems. From my experience, [discovery] works better if you’re very structured. I always provide [a customer] with an outline of what needs to happen so it’s not a secret. Then, do the prototyping phase and keep the customer engaged so they can see the quick outcomes of those prototypes. This is where you also have to really include the feasibility of the data if you’re building an AI solution, right? [Prototyping] can be short or long, but you need to keep the customer engaged throughout that phase so they see quick outcomes. Keep on validating this conceptually, you know, on the napkin, in Figma, it doesn’t really matter; you have to keep on keeping them engaged. Then, once you validate it works and the customer likes it, then build. Don’t really go into the deep development work until you know [all of this!] When you do build, create a beta solution. It only has to work so much to prove the value. Then, run the pilot, and if it’s successful, build the MVP, then launch. It’s simple, but it is a lot of work, and you have to keep your customers really engaged through all of those phases. If something doesn’t work [along the way], try to pivot early enough so you still have a viable product at the end.” - Natalia Andreyeva (34:53)   Links Natalia's LinkedIn
    --------  
    37:34
  • 166 - Can UX Quality Metrics Increase Your Data Product's Business Value and Adoption?
    Today I am going to try to answer a fundamental question: how should you actually measure user experience, especially with data products—and tie this to business value? It's easy to get lost in analytics and think we're seeing the whole picture, but I argue that this is far from the truth. Product leaders need to understand the subjective experience of our users—and unfortunately, analytics does not tell us this. The map is not the territory.   In this episode, I discuss why qualitative data and subjective experience is the data that will most help you make product decisions that will lead you to increased business value. If users aren't getting value from your product(s), and their lives aren’t improving, business value will be extremely difficult to create. So today, I share my thoughts on how to move beyond thinking that analytics is the only way to track UX, and how this helps product leaders uncover opportunities to produce better organizational value.  Ultimately, it’s about creating indispensable solutions and building trust, which is key for any product team looking to make a real impact. Hat tip to UX guru Jared Spool who inspired several of the concepts I share with you today.   Highlights/ Skip to  Don't target adoption for adoption's sake, because product usage can be a tax or benefit (3:00) Why your analytical mind may bias you—and what changes you might have to do this type of product and user research work (7:31) How "making the user's life better" translates to organizational value (10:17) Using Jared Spool's roller coaster chart to measure your product’s user experience and find your opportunities and successes (13:05) How do you measure that you have done a good job with your UX? (17:28)  Conclusions and final thoughts (21:06)   Quotes from Today’s Episode Usage doesn't automatically equal value. Analytics on your analytics is not telling you useful things about user experience or satisfaction. Why? "The map is not the territory." Analytics measure computer metrics, not feelings, and let's face it, users aren't always rational. To truly gauge user value, we need qualitative research - to talk to users - and to hear what their subjective experience is. Want *meaningful* adoption? Talk to and observe your users. That's how you know you are actually making things better. When it’s better for them, the business value will follow. (3:12) Make better things—where better is a measurement based on the subjective experience of the user—not analytics. Usable doesn’t mean they will necessarily want it. Sessions and page views don’t tell you how people *feel* about it. (7:39) Think about the dreadful tools you and so many have been forced to use: the things that waste your time and don’t let you focus on what’s really important. Ever talked to a data scientist who is sick of doing data prep instead of building models, and wondering, “why am I here? This isn’t what I went to school for.” Ignoring these personal frustrations and feelings and focusing only on your customers’ feature requests, JIRA tickets, stakeholder orders, requirements docs, and backlog items is why many teams end up building technically right, effectively wrong solutions. These end user frustrations are where we find our opportunities to delight—and create products and UXs that matter. To improve their lives, we need to dig into their workflows, identify frustrations, and understand the context around our data product solutions. Product leaders need to fall in love with the problems and the frustrations—these are the magic keys to the value kingdom. However, to do this well, you probably need to be doing less delivery and more discovery. (10:27) Imagine a line chart with a Y-axis that is "frustration" at the bottom to "delight" at the top. The X-axis is their user experience, taking place over time. As somebody uses your data product to do their job/task, you can plot their emotional journey. “Get the data, format the data, include the data in a tool, derive some conclusion, challenge the data, share it, make a decision” etc. As a product manager, you probably know what a use-case looks like. Your first job is to plot their existing experience trying/doing that use case with your data product. Where are they frustrated? Where are they delighted? Celebrate your peaks/delighters, and fall in love with the valleys where satisfaction work needs to be done. Connect the dots between these valleys and business value. Address the valleys—especially the ones that impede business value—and you’ll be on your way to “showing the value of your data product.” Analytics on your data product won’t tell you this information; the map is not the territory. (13:22) Analytics about your data product are lying to you. They give you the facts about the product, but not about the user. An example? “Time spent” doing a task. How long is too long? 5 minutes? 50? Analytics will tell you precisely how long it took. The problem is, it won’t tell you how long it FELT it took. And guess what? Your customers and users only care about how long it felt it took—vs. their expectation. Sure, at some point, analytics might eventually help—at scale—understand how your data product is doing—but first you have to understand how people FEEL about it. Only then will you know whether 5 minutes, or 50 minutes is telling you anything meaningful about what—if anything—needs to change. (16:17)
    --------  
    26:12
  • 165 - How to Accommodate Multiple User Types and Needs in B2B Analytics and AI Products When You Lack UX Resources
    A challenge I frequently hear about from subscribers to my insights mailing list is how to design B2B data products for multiple user types with differing needs. From dashboards to custom apps and commercial analytics / AI products, data product teams often struggle to create a single solution that meets the diverse needs of technical and business users in B2B settings. If you're encountering this issue, you're not alone!     In this episode, I share my advice for tackling this challenge including the gift of saying "no.” What are the patterns you should be looking out for in your customer research? How can you choose what to focus on with limited resources? What are the design choices you should avoid when trying to build these products? I’m hoping by the end of this episode, you’ll have some strategies to help reduce the size of this challenge—particularly if you lack a dedicated UX team to help you sort through your various user/stakeholder demands.      Highlights/ Skip to  The importance of proper user research and clustering “jobs to be done” around business importance vs. task frequency—ignoring the rest until your solution can show measurable value  (4:29) What “level” of skill to design for, and why “as simple as possible” isn’t what I generally recommend (13:44) When it may be advantageous to use role or feature-based permissions to hide/show/change certain aspects, UI elements, or features  (19:50) Leveraging AI and LLMs in-product to allow learning about the user and progressive disclosure and customization of UIs (26:44) Leveraging the “old” solution of rapid prototyping—which is now faster than ever with AI, and can accelerate learning (capturing user feedback) (31:14) 5 things I do not recommend doing when trying to satisfy multiple user types in your b2b AI or analytics product (34:14)   Quotes from Today’s Episode If you're not talking to your users and stakeholders sufficiently, you're going to have a really tough time building a successful data product for one user – let alone for multiple personas. Listen for repeating patterns in what your users are trying to achieve (tasks they are doing). Focus on the jobs and tasks they do most frequently or the ones that bring the most value to their business. Forget about the rest until you've proven that your solution delivers real value for those core needs. It's more about understanding the problems and needs, not just the solutions. The solutions tend to be easier to design when the problem space is well understood. Users often suggest solutions, but it's our job to focus on the core problem we're trying to solve; simply entering in any inbound requests verbatim into JIRA and then “eating away” at the list is not usually a reliable strategy. (5:52) I generally recommend not going for “easy as possible” at the cost of shallow value. Instead, you’re going to want to design for some “mid-level” ability, understanding that this may make early user experiences with the product more difficult. Why? Oversimplification can mislead because data is complex, problems are multivariate, and data isn't always ideal. There are also “n” number of “not-first” impressions users will have with your product. This also means there is only one “first impression” they have. As such, the idea conceptually is to design an amazing experience for the “n” experiences, but not to the point that users never realize value and give up on the product.  While I'd prefer no friction, technical products sometimes will have to have a little friction up front however, don't use this as an excuse for poor design. This is hard to get right, even when you have design resources, and it’s why UX design matters as thinking this through ends up determining, in part, whether users obtain the promise of value you made to them. (14:21) As an alternative to rigid role and feature-based permissions in B2B data products, you might consider leveraging AI and / or LLMs in your UI as a means of simplifying and customizing the UI to particular users. This approach allows users to potentially interrogate the product about the UI, customize the UI, and even learn over time about the user’s questions (jobs to be done) such that becomes organically customized over time to their needs. This is in contrast to the rigid buckets that role and permission-based customization present. However, as discussed in my previous episode (164 - “The Hidden UX Taxes that AI and LLM Features Impose on B2B Customers Without Your Knowledge”)  designing effective AI features and capabilities can also make things worse due to the probabilistic nature of the responses GenAI produces. As such, this approach may benefit from a UX designer or researcher familiar with designing data products. Understanding what “quality” means to the user, and how to measure it, is especially critical if you’re going to leverage AI and LLMs to make the product UX better. (20:13) The old solution of rapid prototyping is even more valuable now—because it’s possible to prototype even faster. However, prototyping is not just about learning if your solution is on track. Whether you use AI or pencil and paper, prototyping early in the product development process should be framed as a “prop to get users talking.” In other words, it is a prop to facilitate problem and need clarity—not solution clarity. Its purpose is to spark conversation and determine if you're solving the right problem. As you iterate, your need to continually validate the problem should shrink, which will present itself in the form of consistent feedback you hear from end users. This is the point where you know you can focus on the design of the solution. Innovation happens when we learn; so the goal is to increase your learning velocity. (31:35) Have you ever been caught in the trap of prioritizing feature requests based on volume? I get it. It's tempting to give the people what they think they want. For example, imagine ten users clamoring for control over specific parameters in your machine learning forecasting model. You could give them that control, thinking you're solving the problem because, hey, that's what they asked for! But did you stop to ask why they want that control? The reasons behind those requests could be wildly different. By simply handing over the keys to all the model parameters, you might be creating a whole new set of problems. Users now face a "usability tax," trying to figure out which parameters to lock and which to let float. The key takeaway? Focus on addressing the frequency that the same problems are occurring across your users, not just the frequency a given tactic or “solution” method (i.e. “model” or “dashboard” or “feature”) appears in a stakeholder or user request. Remember, problems are often disguised as solutions. We've got to dig deeper and uncover the real needs, not just address the symptoms. (36:19)
    --------  
    49:04
  • 164 - The Hidden UX Taxes that AI and LLM Features Impose on B2B Customers Without Your Knowledge
    Are you prepared for the hidden UX taxes that AI and LLM features might be imposing on your B2B customers—without your knowledge? Are you certain that your AI product or features are truly delivering value, or are there unseen taxes that are working against your users and your product / business? In this episode, I’m delving into some of UX challenges that I think need to be addressed when implementing LLM and AI features into B2B products.   While AI seems to offer the change for significantly enhanced productivity, it also introduces a new layer of complexity for UX design. This complexity is not limited to the challenges of designing in a probabilistic medium (i.e. ML/AI), but also in being able to define what “quality” means. When the product team does not have a shared understanding of what a measurably better UX outcome means, improved sales and user adoption are less likely to follow.    I’ll also discuss aspects of designing for AI that may be invisible on the surface. How might AI-powered products change the work of B2B users? What are some of the traps I see some startup clients and founders I advise in MIT’s Sandbox venture fund fall into?   If you’re a product leader in B2B / enterprise software and want to make sure your AI capabilities don’t end up creating more damage than value for users,  this episode will help!     Highlights/ Skip to    Improving your AI model accuracy improves outputs—but customers only care about outcomes (4:02) AI-driven productivity gains also put the customer’s “next problem” into their face sooner. Are you addressing the most urgent problem they now have—or used to have? (7:35) Products that win will combine AI with tastefully designed deterministic-software—because doing everything for everyone well is impossible and most models alone aren’t products (12:55) Just because your AI app or LLM feature can do ”X” doesn't mean people will want it or change their behavior (16:26) AI Agents sound great—but there is a human UX too, and it must enable trust and intervention at the right times (22:14) Not overheard from customers: “I would buy this/use this if it had AI” (26:52) Adaptive UIs sound like they’ll solve everything—but to reduce friction, they need to adapt to the person, not just the format of model outputs (30:20) Introducing AI introduces more states and scenarios that your product may need to support that may not be obvious right away (37:56)   Quotes from Today’s Episode Product leaders have to decide how much effort and resources you should put into model improvements versus improving a user’s experience. Obviously, model quality is important in certain contexts and regulated industries, but when GenAI errors and confabulations are lower risk to the user (i.e. they create minor friction or inconveniences), the broader user experience that you facilitate might be what is actually determining the true value of your AI features or product. Model accuracy alone is not going to necessarily lead to happier users or increased adoption. ML models can be quantifiably tested for accuracy with structured tests, but because they’re easier to test for quality vs. something like UX doesn’t mean users value these improvements more. The product will stand a better chance of creating business value when it is clearly demonstrating it is improving your users’ lives. (5:25) When designing AI agents, there is still a human UX - a beneficiary - in the loop. They have an experience, whether you designed it with intention or not. How much transparency needs to be given to users when an agent does work for them? Should users be able to intervene when the AI is doing this type of work?  Handling errors is something we do in all software, but what about retraining and learning so that the future user experiences is better? Is the system learning anything while it’s going through this—and can I tell if it’s learning what I want/need it to learn? What about humans in the loop who might interact with or be affected by the work the agent is doing even if they aren’t the agent’s owner or “user”? Who’s outcomes matter here? At what cost? (22:51) Customers primarily care about things like raising or changing their status, making more money, making their job easier, saving time, etc. In fact,I believe a product marketed with GenAI may eventually signal a negative / burden on customers thanks to the inflated and unmet expectations around AI that is poorly implemented in the product UX. Don’t think it’s going to be bought just because it using  AI in a novel way. Customers aren’t sitting around wishing for “disruption” from your product; quite the opposite. AI or not, you need to make the customer the hero. Your AI will shine when it delivers an outsized UX outcome for your users (27:49) What kind of UX are you delivering right out of the box when a customer tries out your AI product or feature? Did you design it for tire kicking, playing around, and user stress testing? Or just an idealistic happy path? GenAI features inside b2b products should surface capabilities and constraints particularly around where users can create value for themselves quickly.  Natural hints and well-designed prompt nudges in LLMs for example are important to users and to your product team: because you’re setting a more realistic expectation of what’s possible with customers and helping them get to an outcome sooner. You’re also teaching them how to use your solution to get the most value—without asking them to go read a manual. (38:21)
    --------  
    45:25

More Technology podcasts

About Experiencing Data w/ Brian T. O’Neill (UX for AI Data Products, SAAS Analytics, Data Product Management)

Is the value of your enterprise analytics SAAS or AI product not obvious through it’s UI/UX? Got the data and ML models right...but user adoption of your dashboards and UI isn’t what you hoped it would be? While it is easier than ever to create AI and analytics solutions from a technology perspective, do you find as a founder or product leader that getting users to use and buyers to buy seems harder than it should be? If you lead an internal enterprise data team, have you heard that a ”data product” approach can help—but you’re concerned it’s all hype? My name is Brian T. O’Neill, and on Experiencing Data—one of the top 2% of podcasts in the world—I share the stories of leaders who are leveraging product and UX design to make SAAS analytics, AI applications, and internal data products indispensable to their customers. After all, you can’t create business value with data if the humans in the loop can’t or won’t use your solutions. Every 2 weeks, I release interviews with experts and impressive people I’ve met who are doing interesting work at the intersection of enterprise software product management, UX design, AI and analytics—work that you need to hear about and from whom I hope you can borrow strategies. I also occasionally record solo episodes on applying UI/UX design strategies to data products—so you and your team can unlock financial value by making your users’ and customers’ lives better. Hashtag: #ExperiencingData. JOIN MY INSIGHTS LIST FOR 1-PAGE EPISODE SUMMARIES, TRANSCRIPTS, AND FREE UX STRATEGY TIPS https://designingforanalytics.com/ed ABOUT THE HOST, BRIAN T. O’NEILL: https://designingforanalytics.com/bio/
Podcast website

Listen to Experiencing Data w/ Brian T. O’Neill (UX for AI Data Products, SAAS Analytics, Data Product Management), Lex Fridman Podcast and many other podcasts from around the world with the radio.net app

Get the free radio.net app

  • Stations and podcasts to bookmark
  • Stream via Wi-Fi or Bluetooth
  • Supports Carplay & Android Auto
  • Many other app features
Social
v7.16.2 | © 2007-2025 radio.de GmbH
Generated: 4/29/2025 - 8:16:48 AM