Powered by RND
PodcastsEducationOracle University Podcast

Oracle University Podcast

Oracle Corporation
Oracle University Podcast
Latest episode

Available Episodes

5 of 141
  • Inside Cloud Networking
    In this episode, hosts Lois Houston and Nikita Abraham team up with Senior Principal OCI Instructor Sergio Castro to unpack the basics of cloud networking and the Domain Name System (DNS). You'll learn how local and virtual networks connect devices, and how DNS seamlessly translates familiar names like oracle.com into addresses computers understand.   Cloud Tech Jumpstart: https://mylearn.oracle.com/ou/course/cloud-tech-jumpstart/152992 Oracle University Learning Community: https://education.oracle.com/ou-community LinkedIn: https://www.linkedin.com/showcase/oracle-university/ X: https://x.com/Oracle_Edu   Special thanks to Arijit Ghosh, David Wright, Kris-Ann Nansen, Radhika Banka, and the OU Studio Team for helping us create this episode. ------------------------------------------------ Episode Transcript: 00:00 Welcome to the Oracle University Podcast, the first stop on your cloud journey. During this series of informative podcasts, we'll bring you foundational training on the most popular Oracle technologies. Let's get started! 00:25 Lois: Hello and welcome to the Oracle University Podcast! I'm Lois Houston, Director of Innovation Programs with Oracle University, and with me is Nikita Abraham, Team Lead: Editorial Services. Nikita: Hi everyone! For the last few weeks, we've been talking about different aspects of cloud data centers. Today, we're focusing on something that's absolutely key to how everything works in the cloud: networking and domain name systems.  00:52 Lois: And to guide us through it, we've got Sergio Castro, Senior Principal OCI Instructor at Oracle University. We'll start by trying to understand why networking is so crucial and how it connects everything behind the scenes. Sergio, could you explain what networking means in simple terms, especially for folks new to cloud tech? Sergio: Networking is the backbone of cloud computing. It is a fundamental service because it provides the infrastructure for connecting users, applications, and resources within a cloud environment. It basically enables data transfers. It facilitates remote access. And ensures that cloud services are accessible to users. This provided that these users have the correct credentials.  01:38 Nikita: Ok, can you walk us through how a typical network operates? Sergio: In networking, typically starts with the local area network. Basically, networking is a crucial component for any IT service because it's the foundation for the architecture framework of any of the services that we consume today. So, a network is two or more computers interconnected to each other. And not necessarily it needs to be a computer. It can be another device such as a printer or an IP TV or an IP phone or an IP camera. Many devices can be part of a local area network. And a local area network can be very small. Like I mentioned before, two or more computers, or it could grow into a very robust and complicated set of interconnected networks. And if that happens, then it can become very expensive as well. Cloud networking, it's the Achilles heel for many of the database administrators, programmers, quality assurance engineers, any IT other than a network administrator. Actually, when the network starts to grow, managing access and permissions and implementing robust security measures, this coupled with the critical importance of reliable, and secure performance, can create significant hurdles. 03:09 Nikita: What are the different types of networks we have? Sergio: A local area network is basically in one building. It covers… it can be maybe two buildings that are in close proximity in a small campus, but typically it's very small by definition, and they're all interconnected to each other via one router, typically. A metropolitan area network is a typical network that spans into a city or a metro area, hence the name metropolitan area network. So, one building can be on one edge of the city and the other building can be at the other edge of the city, and they are interconnected by a digital circuit typically. So that's the case. It's more than one building, and the separation of those buildings is considerable. It can go into several miles.  And a wide area network is a network that spans multiple cities, states, countries, even international. 04:10 Lois: I think we'll focus on the local area network for today's conversation. Could you give us a real-world example, maybe what a home office network setup looks like? Sergio: If you are accessing this session from your home office or from your office or corporate office even, but a home office or a home network, typically, you have a router that is being provided to you by the internet vendor—the internet service provider. And then you have your laptop or your computer, your PC connected to that router. And then you might have other devices either connected via cable—ethernet cable—or Wi-Fi. And the interconnectivity within that small building is what makes a local area network. And it looks very similar once you move on into a corporate office. Again, it's two or more computers interconnected. That's what makes a local area network. In a corporate office, the difference with a home office or your home is that you have many more computers. And because you have many more computers, that local area network might be divided into subnets. And for that, you need a switch. So, you have additional devices like a switch and a firewall and the router. And then you might have a server as well. So that's the local area network. Two or more computers. And local area networks are capable of high speeds because they are in close proximity to each other.  05:47 Nikita: Ok… so obviously a local area network has several different components. Let's break them down. What's a client, what's a server, and how do they interact? Sergio: A client basically is a requester of a service. Like when you hop into your browser and then you want to go to a website, for example, oracle.com, you type www.oracle.com, you are requesting a service from a server. And that server typically resides in a data center like oracle.com under the Oracle domain is a big data center with many interconnected servers. Interconnected so they can concurrently serve multiple millions of requests coming into www.oracle.com at the same time. So, servers provide services to client computers. So basically, that's the relation. A client requests a service and the server provides that service.  06:50 Lois: And what does that client-server setup actually look like? Sergio: So, let's continue with our example of a web browser requesting a service from a web server. So, in this case, the physical computer is the server. And then it has a software running on it. And that makes it a web server. So, once you type www.oracle.com, it sends the request and the request is received. And provided that everything's configured correctly and that there are no typos, then it will provide a response and basically give the view of the website. And that's obviously in the local area network, maybe quality assurance when they were testing this for going live. But when it goes live, then you have the internet in the middle. And the internet in the middle then have many routers, hubs, switches. 07:51 Transform the way you work with Oracle Database 23ai! This cutting-edge technology brings the power of AI directly to your data, making it easier to build powerful applications and manage critical workloads. Want to learn more about Database 23ai? Visit mylearn.oracle.com to pick from our range of courses and enroll today!   08:16 Nikita: Welcome back! Sergio, would this client-server model also apply to my devices at home? Sergio: In your own local area network, you have client server even without noticing. For example, let's go back to our home office example. What happens if we add another laptop into the scenario? Then all of these devices, they need a way for them to communicate. And for that, they have an IP address. And who provides that IP address? The minute that you add, the other device is going to send a request to the router. The router, we call it router, but it has multiple functions like the mobile device, the handheld device that we call smartphone. It has many functions like camera and calendar and many other functionalities. The router has an additional functionality called the dynamic host configuration protocol at DHCP server. So basically, the laptop requests, hey, give me an IP address, and then the router or the DHCP server replies, here's your IP address. And it's going to be a different one. So, they don't overlap. So that's an example of client server. 09:32 Lois: And where do virtual networks fit into all this?  Sergio: A virtual network is basically, a software version of the physical network. It looks and feels exactly as a physical network does. We do have a path or a communication, in this case, in the physical network, you have either Wi-Fi or you have internet cable. And then you add your workstations or devices on top of that. And then you might create subnets.  So, in a software-defined network or in a virtual network, you have a software-defined connectivity, physical cable and all of that. Everything is software-defined. And it looks exactly the same, except that everything is software. In a software or a virtual network, you can communicate with a physical network as if that software or that virtual network was another physical network. Again, this is a software network or a software-defined network, a virtual network, no longer a physical network.  10:42 Lois: Let's switch gears a little and talk about Domain Name Systems. Sergio, can you explain what DNS is, and why it's important when we browse the web? Sergio: DNS is the global database for internet addressing. The DNS plays a very important role on the internet. And many internet services are closely related to DNS. The main functionality of DNS is to translate easy-to-remember names into IP addresses. Some IP addresses might be very easy to remember. But however, if you have many of them, then it's easier to remember oracle.com or ucla.edu or navy.mil for military or eds.org for organization or gobierno.mx for Mexico. So that's the main feature of the DNS. It's very similar to a mobile phone to the contacts application in your mobile phone, because the contacts application maps names to phone numbers. It's easier to remember Bob's phone than 555-123-4567. So, it's easier to remember the name of the persons in your contacts list, like it is easier to remember, as previously mentioned, oracle.com than 138.1.33.162. Again, 138.1.33.162 might be easy for you to remember if that's the only one that you need to remember. But if you have 20, 40, 50, like we do with phone numbers, it's easier to remember oracle.com or ucla.edu. And this is essential, this mapping, again, because we work with names it's easier for us to remember. However, the fact is that computers, they still need to use IP addresses. And remember that this is the decimal representation of the binary number. It's a lot harder for us to remember the 32 bits or each one of the octets in binary. So that's the main purpose of DNS. Now the big difference is that the contact list in a cell phone is unique to that individual phone. However, DNS is global. It applies to everybody in the world. Anybody typing oracle.com will translate that into 138.1.33.162. Now this is an actual IP address of oracle.com. Oracle.com has many IP addresses. If you ping oracle.com, chances are that this is one of the many addresses that maps to oracle.com. 13:35 Nikita: You mentioned that a domain name like oracle.com can have many IP addresses. So how does DNS help my computer find the right one? Sergio: So, let's say that you want to look for www.example.com, how do you do that? So, you type in your computer instance or in your terminal, in your laptop, in your computer, you type in your browser "www.example.com." If the browser doesn't have that information in cache, then it's going to first ask your DNS server, the one that you have assigned and indicating in your browser's configuration. And if the DNS server then it will relate that the information is 96.7.128.198. This address is real, and your browser will go to this address once you type www.example.com. 14:34 Nikita: But what happens if the browser doesn't know the address?  Sergio: This is where it gets interesting. Your browser wants to go to www.example.com. And it's going to go and look within its cache. If it doesn't have it, then the first step is to go ahead to your DNS server and ask them, hey, if you don't know this address, go ahead and find out. So, it goes to the root server. All the servers are administrated by IANA. And it's going to send the information, hey, what's the IP address for www.example.com? And if the root server doesn't know it, it's going to let you know, hey, ask the top-level domain name server, in this case, the .com. It's a top-level domain name server. So, you go ahead and ask this top-level domain name server to do that for you. In this case, again, the .com and you asked, hey, what's the IP address for example.com? And if the top-level domain name server doesn't know, it's going to ask you, hey, ask example.com. And example.com is actually within the customer's domain. And then based on these instructions you ask, what is the IP address for www.example.com? So, it will provide you with the IP address. And once your DNS server has the IP address, then it's going to relate to your web browser. And this is where your web browser actually reaches 96.7.128.198. Very interesting, isn't it? 16:23 Lois: Absolutely! Sergio, you mentioned top-level domain names. What are they and how are they useful? Sergio: A top level domain is the rightmost segment of a domain name, and it's located after the last visible dot in the domain name. So oracle.com or cloud.oracle.com is a domain name. So, .com is a top-level domain. And the purpose of the top-level domain is to recognize certain elements of a website. This top-level domain indicates that this is a commercial site. Now, .edu, for example, is a top-level domain name for higher education. We also have .org for nonprofit organizations, .net for network service providers. And we also have country specific. .ca for Canadian websites, .it for Italian websites. Now .it, a lot of companies that are in the information technology business utilizes this one to indicate that they're in information technology. There's also the .us. And for US companies, most of the time this is optional. .com, .org, .net is understood that they are from the US. Now if .com is a top-level domain name, what is that .oracle in cloud? So, Oracle is the second-level domain name. And in this case, Cloud is the third-level domain name. And lately you've been seeing a lot more top-level domain names. These are the classic ones. But now you get .AI, .media, .comedy, .people, and so on and so forth. You have many, many, even companies now have the option of registering their company name as the top-level domain name. 18:24 Nikita: Thank you, Sergio, for this deep dive into local area networks and domain name systems. If you want to learn about the topics we covered today, go to mylearn.oracle.com and search for the Cloud Tech Jumpstart course.  Lois: And don't forget to join us next week for another episode on networking essentials. Until next time, this is Lois Houston… Nikita: And Nikita Abraham, signing off! 18:46 That's all for this episode of the Oracle University Podcast. If you enjoyed listening, please click Subscribe to get all the latest episodes. We'd also love it if you would take a moment to rate and review us on your podcast app. See you again on the next episode of the Oracle University Podcast.
    --------  
    19:15
  • Cloud Data Centers: Core Concepts - Part 4
    In this episode, hosts Lois Houston and Nikita Abraham, along with Principal OCI Instructor Orlando Gentil, break down the differences between Infrastructure-as-a-Service, Platform-as-a-Service, and Software-as-a-Service.   The conversation explores how each framework influences control, cost efficiency, expansion, reliability, and contingency planning.   Cloud Tech Jumpstart: https://mylearn.oracle.com/ou/course/cloud-tech-jumpstart/152992 Oracle University Learning Community: https://education.oracle.com/ou-community LinkedIn: https://www.linkedin.com/showcase/oracle-university/ X: https://x.com/Oracle_Edu   Special thanks to Arijit Ghosh, David Wright, Kris-Ann Nansen, Radhika Banka, and the OU Studio Team for helping us create this episode. ----------------------------------------------------- Episode Transcript: 00:00 Welcome to the Oracle University Podcast, the first stop on your cloud journey. During this series of informative podcasts, we'll bring you foundational training on the most popular Oracle technologies. Let's get started! 00:25 Nikita: Welcome to the Oracle University Podcast! I'm Nikita Abraham, Team Lead: Editorial Services with Oracle University, and with me is Lois Houston, Director of Innovation Programs. Lois: Hey there! Last week, we spoke about how hypervisors, virtual machines, and containers have transformed data centers. Today, we're moving on to something just as important—the main cloud models that drive modern cloud computing. Nikita: Orlando Gentil, Principal OCI Instructor at Oracle University, joins us once again for part four of our discussion on cloud data centers.  01:01 Lois: Hi Orlando! Glad to have you with us today. Can you walk us through the different types of cloud models?  Orlando: These are commonly categorized into three main service models: Infrastructure-as-a-Service, Platform-as-a-Service, and Software-as-a-Service. Let's use the idea of getting around town to understand cloud service models. IaaS is like renting a car. You don't own the car, but you control where it goes, how fast, and when to stop. In cloud terms, the provider gives you the infrastructure—virtual machines, storage, and networking—but you manage everything on top—the OS, middleware, runtime, and application. Thus, it's like using a shuttle service. You bring your bags—your code, pick your destination—your app requirements, but someone else drives and maintains the vehicle. You don't worry about the engine, fuel, or routing planning. That's the platform's job. Your focus stays on development and deployment, not on servers or patching. SaaS is like ordering a taxi. You say where you want to go and everything else is handled for you. It's the full-service experience. In the cloud, SaaS is software UXs over the web—Email, CRM, project management. No infrastructure, no updates, just productivity.  02:32 Nikita: Ok. How do the trade-offs between control and convenience differ across SaaS, PaaS, and IaaS? Orlando: With IaaS, much like renting a car, you gain high control. You are managing components like the operating system, runtime, your applications, and your data. In return, the provider expertly handles the underlying virtual machines, storage, and networking. This model gives you immense flexibility. Moving to PaaS, our shuttle service, you shift to a medium level of control but gain significantly higher convenience. Your primary focus remains on your application code and data. The provider now takes on the heavy lifting of managing the runtime environment, the operating system, the servers themselves, and even the scaling. Finally, SaaS, our taxi service, offers the highest convenience with the lowest control level. Here, your responsibility is essentially just using the application and managing your specific configurations or data within it. The cloud provider manages absolutely everything else—the entire infrastructure, the platform, and the application itself. 03:52 Nikita: One of the top concerns for cloud users is cost optimization. How can we manage this? Orlando: Each cloud service model offers distinct strategies to help you manage and reduce your spending effectively, as well as different factors that drives those costs. For Infrastructure-as-a-Service, where you have more control, optimization largely revolves around smart resource management. This means rightsizing your VMs, ensuring they are not overprovisioned, and actively turning off idle resources when not in use. Leveraging preemptible or spot instances for flexible workloads can also significantly cut costs. Your charges here are directly tied to your compute, storage, and network usage, so efficiency is key. Moving to Platform-as-a-Service, where the platform is managed for you, optimization shifts slightly. Strategies include choosing scalable platforms that can efficiently handle fluctuating demand, opting for consumption-based pricing where available, and diligently optimizing your runtime usage to minimize processing time. Costs in PaaS are typically based on your application usage, runtime hours, and storage consumed. Finally, for Software-as-a-Service where you can consume a ready-to-use application, cost optimization centers on licensing and usage. This involves consolidating tools to avoid redundant subscriptions, selecting usage-based plans if they align better with your needs, and crucially, eliminating any unused license. SaaS costs are generally based on subscription or per user fees. Understanding these nuances is essential for effective cloud financial management.  05:52 Lois: Ok. And what about scalability? How does each model handle the ability to grow and shrink with demand, without needing manual hardware changes? Orlando: How you achieve and manage that scalability varies significantly across our three service models. For Infrastructure-as-a-Service, you have the most direct control over scaling. You can implement manual or auto scaling by adding or removing virtual machines as needed, often leveraging load balancers to distribute traffic. In this model, you configure the scaling policies and parameters based on your specific workload. Moving to Platform-as-a-Service, the scaling becomes more automated and elastic. The platform automatically adjusts resources based on your application's demand, allowing it to seamlessly handle traffic spikes or dips. Here, the provider manages the underlying scaling behavior, freeing you from that operational burden. Finally, with Software-as-a-Service, scalability is largely abstracted and invisible to the user. The application scales automatically in the background, with the entire process fully managed by the provider. As a user, you simply benefit from the application's ability to handle millions of users without ever needing to worry about the infrastructure. Understanding these scaling differences is crucial for selecting the right model for your application's need.  07:34 Join the Oracle University Learning Community and tap into a vibrant network of over 1 million members, including Oracle experts and fellow learners. This dynamic community is the perfect place to grow your skills, connect with likeminded learners, and celebrate your successes. As a MyLearn subscriber, you have access to engage with your fellow learners and participate in activities in the community. Visit community.oracle.com/ou to check things out today!  08:05 Nikita: Welcome back! We've talked about cost optimization and scalability in cloud environments. But what about ensuring availability? How does that work?  Orlando: Availability refers to the ability of a system or service to remain accessible in operational, even in the face of failures or extremely high demand. The approach of achieving and managing availability, and crucially, your role versus the provider's differs greatly across each model. With Infrastructure-as-a-Service, you have the most direct control over your availability strategy. You will be responsible for designing an architecture that includes redundant VMs, deploying load balancers, and potentially even multi-region setups for disaster recovery. Your specific roles involves designing this architecture and managing your failover process and data backups. The provider's role, in turn, is to deliver the underlying infrastructure with defined service level agreements, SLAs, and health monitoring. For Platform-as-a-Service, the platform itself offers a higher degree of built-in, high availability, and automated failover. While the provider maintains the runtime platform's availability, your role shifts. You need to ensure your application's logic is designed to gracefully handle retries and potential transient failures that might occur. Finally, with Software-as-a-Service, availability is almost entirely handled for you. The provider ensures fully abstracted redundancy and failover behind the scenes. Your role becomes largely minimal, often just involving a specific application's configurations. The provider is entirely responsible for the full application uptime and the underlying high availability infrastructure. Understanding these distinct roles in ensuring availability is essential for setting expectations and designing your cloud strategy efficiently. 10:19 Lois: Building on availability, let's talk Disaster Recovery. Orlando: DR is about ensuring your systems and data can be recovered and brought back online in the event of a significant failure, whether it's a hardware crash, a natural disaster, or even human error. Just like the other aspects, the strategy and responsibilities for DR vary significantly across the cloud service models. For Infrastructure-as-a Service, you have the most direct involvement in your DR strategy. You need to design and execute custom DR plans. This involves leveraging capabilities like multi-region backups, taking VM snapshots, and setting up failover clusters. A real-world example might be using Oracle Cloud compute to replicate your VMs to a secondary region with block volume backups to ensure business continuity. Essentially, you manage your entire DR process here. Moving to Platform-as-a-Service, disaster recovery becomes a shared responsibility. The platform itself offers built-in redundancy and provide APIs for backup and restore. Your role will be to configure the application-level recovery and ensure your data is backed up appropriately, while the provider handles the underlying infrastructure's DR capability. An example could be Azure app service, Oracle APEX applications, where your apps are redeployed from source control like Git after an incident. Finally, with Software-as-a-Service, disaster recovery is almost entirely vendor managed. The provider takes full responsibility, offering features like auto replication and continuous backup, often backed by specific Recovery Point Objective (RPO) and Recovery Time Objective (RTO) SLAs. A common example is how Microsoft 365 or Salesforce manage user data backups in restoration. It's all handled seamlessly by the provider without your direct intervention. Understanding these different approaches to DR is crucial for defining your own business continuity plans in the cloud. 12:46 Lois: Thank you, Orlando, for this insightful discussion. To recap, we spoke about the three main cloud models: IaaS, PaaS, and SaaS, and how each one offers a different mix of control and convenience, impacting cost, scalability, availability, and recovery.  Nikita: Yeah, hopefully this helps you pick the right cloud solution for your needs. If you want to learn more about the topics we discussed today, head over to mylearn.oracle.com and search for the Cloud Tech Jumpstart course. In our next episode, we'll take a close look at the essentials of networking. Until then, this is Nikita Abraham… Lois: And Lois Houston, signing off! 13:26 That's all for this episode of the Oracle University Podcast. If you enjoyed listening, please click Subscribe to get all the latest episodes. We'd also love it if you would take a moment to rate and review us on your podcast app. See you again on the next episode of the Oracle University Podcast.
    --------  
    13:56
  • Cloud Data Centers: Core Concepts - Part 3
    Have you ever considered how a single server can support countless applications and workloads at once?   In this episode, hosts Lois Houston and Nikita Abraham, together with Principal OCI Instructor Orlando Gentil, explore the sophisticated technologies that make this possible in modern cloud data centers.   They discuss the roles of hypervisors, virtual machines, and containers, explaining how these innovations enable efficient resource sharing, robust security, and greater flexibility for organizations.   Cloud Tech Jumpstart: https://mylearn.oracle.com/ou/course/cloud-tech-jumpstart/152992 Oracle University Learning Community: https://education.oracle.com/ou-community LinkedIn: https://www.linkedin.com/showcase/oracle-university/ X: https://x.com/Oracle_Edu   Special thanks to Arijit Ghosh, David Wright, Kris-Ann Nansen, Radhika Banka, and the OU Studio Team for helping us create this episode. -------------------------------------------------- Episode Transcript:   00:00 Welcome to the Oracle University Podcast, the first stop on your cloud journey. During this series of informative podcasts, we'll bring you foundational training on the most popular Oracle technologies. Let's get started! 00:25 Lois: Hello and welcome to the Oracle University Podcast! I'm Lois Houston, Director of Innovation Programs with Oracle University, and with me is Nikita Abraham, Team Lead: Editorial Services. Nikita: Hi everyone! For the last two weeks, we've been talking about different aspects of cloud data centers. In this episode, Orlando Gentil, Principal OCI Instructor at Oracle University, joins us once again to discuss how virtualization, through hypervisors, virtual machines, and containers, has transformed data centers. 00:58 Lois: That's right, Niki. We'll begin with a quick look at the history of virtualization and why it became so widely adopted. Orlando, what can you tell us about that?  Orlando: To truly grasp the power of virtualization, it's helpful to understand its journey from its humble beginnings with mainframes to its pivotal role in today's cloud computing landscape. It might surprise you, but virtualization isn't a new concept. Its roots go back to the 1960s with mainframes. In those early days, the primary goal was to isolate workloads on a single powerful mainframe, allowing different applications to run without interfering with each other. As we moved into the 1990s, the challenge shifted to underutilized physical servers. Organizations often had numerous dedicated servers, each running a single application, leading to significant waste of computing resources. This led to the emergence of virtualization as we know it today, primarily from the 1990s to the 2000s. The core idea here was to run multiple isolated operating systems on a single physical server. This innovation dramatically improved the resource utilization and laid the technical foundation for cloud computing, enabling the scalable and flexible environments we rely on today. 02:26 Nikita: Interesting. So, from an economic standpoint, what pushed traditional data centers to change and opened the door to virtualization? Orlando: In the past, running applications often meant running them on dedicated physical servers. This led to a few significant challenges. First, more hardware purchases. Every new application, every new project often required its own dedicated server. This meant constantly buying new physical hardware, which quickly escalated capital expenditure. Secondly, and hand-in-hand with more servers came higher power and cooling costs. Each physical server consumed power and generated heat, necessitating significant investment in electricity and cooling infrastructure. The more servers, the higher these operational expenses became. And finally, a major problem was unused capacity. Despite investing heavily in these physical servers, it was common for them to run well below their full capacity. Applications typically didn't need 100% of server's resources all the time. This meant we were wasting valuable compute power, memory, and storage, effectively wasting resources and diminishing the return of investment from those expensive hardware purchases. These economic pressures became a powerful incentive to find more efficient ways to utilize data center resources, setting the stage for technologies like virtualization. 04:05 Lois: I guess we can assume virtualization emerged as a financial game-changer. So, what kind of economic efficiencies did virtualization bring to the table? Orlando: From a CapEx or capital expenditure perspective, companies spent less on servers and data center expansion. From an OpEx or operational expenditure perspective, fewer machines meant lower electricity, cooling, and maintenance costs. It also sped up provisioning. Spinning a new VM took minutes, not days or weeks. That improved agility and reduced the operational workload on IT teams. It also created a more scalable, cost-efficient foundation which made virtualization not just a technical improvement, but a financial turning point for data centers. This economic efficiency is exactly what cloud providers like Oracle Cloud Infrastructure are built on, using virtualization to deliver scalable pay as you go infrastructure.  05:09 Nikita: Ok, Orlando. Let's get into the core components of virtualization. To start, what exactly is a hypervisor? Orlando: A hypervisor is a piece of software, firmware, or hardware that creates and runs virtual machines, also known as VMs. Its core function is to allow multiple virtual machines to run concurrently on a single physical host server. It acts as virtualization layer, abstracting the physical hardware resources like CPU, memory, and storage, and allocating them to each virtual machine as needed, ensuring they can operate independently and securely. 05:49 Lois: And are there types of hypervisors? Orlando: There are two primary types of hypervisors. The type 1 hypervisors, often called bare metal hypervisors, run directly on the host server's hardware. This means they interact directly with the physical resources offering high performance and security. Examples include VMware ESXi, Oracle VM Server, and KVM on Linux. They are commonly used in enterprise data centers and cloud environments. In contrast, type 2 hypervisors, also known as hosted hypervisors, run on top of an existing operating system like Windows or macOS. They act as an application within that operating system. Popular examples include VirtualBox, VMware Workstation, and Parallels. These are typically used for personal computing or development purposes, where you might run multiple operating systems on your laptop or desktop. 06:55 Nikita: We've spoken about the foundation provided by hypervisors. So, can we now talk about the virtual entities they manage: virtual machines? What exactly is a virtual machine and what are its fundamental characteristics? Orlando: A virtual machine is essentially a software-based virtual computer system that runs on a physical host computer. The magic happens with the hypervisor. The hypervisor's job is to create and manage these virtual environments, abstracting the physical hardware so that multiple VMs can share the same underlying resources without interfering with each other. Each VM operates like a completely independent computer with its own operating system and applications.  07:40 Lois: What are the benefits of this? Orlando: Each VM is isolated from the others. If one VM crashes or encounters an issue, it doesn't affect the other VMs running on the same physical host. This greatly enhances stability and security. A powerful feature is the ability to run different operating systems side-by-side on the very same physical host. You could have a Windows VM, a Linux VM, and even other specialized OS, all operating simultaneously. Consolidate workloads directly addresses the unused capacity problem. Instead of one application per physical server, you can now run multiple workloads, each in its own VM on a single powerful physical server. This dramatically improves hardware utilization, reducing the need of constant new hardware purchases and lowering power and cooling costs. And by consolidating workloads, virtualization makes it possible for cloud providers to dynamically create and manage vast pools of computing resources. This allows users to quickly provision and scale virtual servers on demand, tapping into these shared pools of CPU, memory, and storage as needed, rather than being tied to a single physical machine. 09:10 Oracle University's Race to Certification 2025 is your ticket to free training and certification in today's hottest technology. Whether you're starting with Artificial Intelligence, Oracle Cloud Infrastructure, Multicloud, or Oracle Data Platform, this challenge covers it all! Learn more about your chance to win prizes and see your name on the Leaderboard by visiting education.oracle.com/race-to-certification-2025. That's education.oracle.com/race-to-certification-2025. 09:54 Nikita: Welcome back! Orlando, let's move on to containers. Many see them as a lighter, more agile way to build and run applications. What's your take? Orlando: A container packages an application in all its dependencies, like libraries and other binaries, into a single, lightweight executable unit. Unlike a VM, a container shares the host operating system's kernel, running on top of the container runtime process. This architectural difference provides several key advantages. Containers are incredibly portable. They can be taken virtually anywhere, from a developer's laptop to a cloud environment, and run consistently, eliminating it works on my machine issues. Because containers share the host OS kernel, they don't need to bundle a full operating system themselves. This results in significantly smaller footprints and less administration overhead compared to VMs. They are faster to start. Without the need to boot a full operating system, containers can start up in seconds, or even milliseconds, providing rapid deployment and scaling capabilities. 11:12 Nikita: Ok. Throughout our conversation, you've spoken about the various advantages of virtualization but let's consolidate them now.  Orlando: From a security standpoint, virtualization offers several crucial benefits. Each VM operates in its own isolated sandbox. This means if one VM experiences a security breach, the impact is generally contained to that single virtual machine, significantly limiting the spread of potential threats across your infrastructure. Containers also provide some isolation. Virtualization allows for rapid recovery. This is invaluable for disaster recovery or undoing changes after a security incident. You can implement separate firewalls, access rules, and network configuration for each VM. This granular control reduces the overall exposure and attack surface across your virtualized environments, making it harder for malicious actors to move laterally. Beyond security, virtualization also brings significant advantages in terms of operational and agility benefits for IT management. Virtualization dramatically improves operational efficiency and agility. Things are faster. With virtualization, you can provision new servers or containers in minutes rather than days or weeks. This speed allows for quicker deployment of applications and services. It becomes much simpler to deploy consistent environment using templates and preconfigured VM images or containers. This reduces errors and ensures uniformity across your infrastructure. It's more scalable. Virtualization makes your infrastructure far more scalable. You can reshape VMs and containers to meet changing demands, ensuring your resources align precisely with your needs. These operational benefits directly contribute to the power of cloud computing, especially when we consider virtualization's role in enabling cloud and scalability. Virtualization is the very backbone of modern cloud computing, fundamentally enabling its scalability. It allows multiple virtual machines to run on a single physical server, maximizing hardware utilization, which is essential for cloud providers. This capability is core of infrastructure as a service offerings, where users can provision virtualized compute resources on demand. Virtualization makes services globally scalable. Resources can be easily deployed and managed across different geographic regions to meet worldwide demand. Finally, it provides elasticity, meaning resources can be automatically scaled up or down in response to fluctuating workloads, ensuring optimal performance and cost efficiency. 14:21 Lois: That's amazing. Thank you, Orlando, for joining us once again.  Nikita: Yeah, and remember, if you want to learn more about the topics we covered today, go to mylearn.oracle.com and search for the Cloud Tech Jumpstart course.  Lois: Well, that's all we have for today. Until next time, this is Lois Houston… Nikita: And Nikita Abraham, signing off! 14:40 That's all for this episode of the Oracle University Podcast. If you enjoyed listening, please click Subscribe to get all the latest episodes. We'd also love it if you would take a moment to rate and review us on your podcast app. See you again on the next episode of the Oracle University Podcast.
    --------  
    15:09
  • Cloud Data Centers: Core Concepts - Part 2
    Have you ever wondered where all your digital memories, work projects, or favorite photos actually live in the cloud?   In this episode, Lois Houston and Nikita Abraham are joined by Principal OCI Instructor Orlando Gentil to discuss cloud storage.   They explore how data is carefully organized, the different ways it can be stored, and what keeps it safe and easy to find.   Cloud Tech Jumpstart: https://mylearn.oracle.com/ou/course/cloud-tech-jumpstart/152992   Oracle University Learning Community: https://education.oracle.com/ou-community   LinkedIn: https://www.linkedin.com/showcase/oracle-university/   X: https://x.com/Oracle_Edu   Special thanks to Arijit Ghosh, David Wright, Kris-Ann Nansen, Radhika Banka, and the OU Studio Team for helping us create this episode. ------------------------------------------------------   Episode Transcript:    00:00 Welcome to the Oracle University Podcast, the first stop on your cloud journey. During this series of informative podcasts, we'll bring you foundational training on the most popular Oracle technologies. Let's get started! 00:25 Nikita: Welcome to the Oracle University Podcast! I'm Nikita Abraham, Team Lead of Editorial Services with Oracle University, and with me is Lois Houston, Director of Innovation Programs. Lois: Hey there! Last week, we spoke about the differences between traditional and cloud data centers, and covered components like CPU, RAM, and operating systems. If you haven't listened to the episode yet, I'd suggest going back and listening to it before you dive into this one.  Nikita: Joining us again is Orlando Gentil, Principal OCI Instructor at Oracle University, and we're going to ask him about another fundamental concept: storage. 01:04 Lois: That's right, Niki. Hi Orlando! Thanks for being with us again today. You introduced cloud data centers last week, but tell us, how is data stored and accessed in these centers?  Orlando: At a fundamental level, storage is where your data resides persistently. Data stored on a storage device is accessed by the CPU and, for specialized tasks, the GPU. The RAM acts as a high-speed intermediary, temporarily holding data that the CPU and the GPU are actively working on. This cyclical flow ensures that applications can effectively retrieve, process, and store information, forming the backbone for our computing operations in the data center. 01:52 Nikita: But how is data organized and controlled on disks? Orlando: To effectively store and manage data on physical disks, a structured approach is required, which is defined by file systems and permissions. The process began with disks. These are the raw physical storage devices. Before data can be written to them, disks are typically divided into partitions. A partition is a logical division of a physical disk that acts as if it were a separated physical disk. This allows you to organize your storage space and even install multiple operating systems on a single drive. Once partitions are created, they are formatted with a file system. 02:40 Nikita: Ok, sorry but I have to stop you there. Can you explain what a file system is? And how is data organized using a file system?  Orlando: The file system is the method and the data structure that an operating system uses to organize and manage files on storage devices. It dictates how data is named, is stored, retrieved, and managed on the disk, essentially providing the roadmap for data. Common file systems include NTFS for Windows and ext4 or XFS for Linux. Within this file system, data is organized hierarchically into directories, also known as folders. These containers help to logically group related files, which are the individual units of data, whether they are documents, images, videos, or applications. Finally, overseeing this entire organization are permissions.  03:42 Lois: And what are permissions? Orlando: Permissions define who can access a specific files and directories and what actions they are allowed to perform-- for example, read, write, or execute. This access control, often managed by user, group, and other permissions, is fundamental for security, data integrity, and multi-user environments within a data center.  04:09 Lois: Ok, now that we have a good understanding of how data is organized logically, can we talk about how data is stored locally within a server?   Orlando: Local storage refers to storage devices directly attached to a server or computer. The three common types are Hard Disk Drive. These are traditional storage devices using spinning platters to store data. They offer large capacity at a lower cost per gigabyte, making them suitable for bulk data storage when high performance isn't the top priority. Unlike hard disks, solid state drives use flash memory to store data, similar to USB drives but on a larger scale. They provide significantly faster read and write speeds, better durability, and lower power consumption than hard disks, making them ideal for operating systems, applications, and frequently accessed data. Non-Volatile Memory Express is a communication interface specifically designed for solid state that connects directly to the PCI Express bus. NVME offers even faster performance than traditional SATA-based solid state drives by reducing latency and increasing bandwidth, making it the top choice for demanding workloads that require extreme speed, such as high-performance databases and AI applications. Each type serves different performance and cost requirements within a data center. While local storage is essential for immediate access, data center also heavily rely on storage that isn't directly attached to a single server.  05:59 Lois: I'm guessing you're hinting at remote storage. Can you tell us more about that, Orlando? Orlando: Remote storage refers to data storage solutions that are not physically connected to the server or client accessing them. Instead, they are accessed over the network. This setup allows multiple clients or servers to share access to the same storage resources, centralizing data management and improving data availability. This architecture is fundamental to cloud computing, enabling vast pools of shared storage that can be dynamically provisioned to various users and applications. 06:35 Lois: Let's talk about the common forms of remote storage. Can you run us through them? Orlando: One of the most common and accessible forms of remote storage is Network Attached Storage or NAS. NAS is a dedicated file storage device connected to a network that allows multiple users and client devices to retrieve data from a centralized disk capacity. It's essentially a server dedicated to serving files. A client connects to the NAS over the network. And the NAS then provides access to files and folders. NAS devices are ideal for scenarios requiring shared file access, such as document collaboration, centralized backups, or serving media files, making them very popular in both home and enterprise environments. While NAS provides file-level access over a network, some applications, especially those requiring high performance and direct block level access to storage, need a different approach.  07:38 Nikita: And what might this approach be?  Orlando: Internet Small Computer System Interface, which provides block-level storage over an IP network. iSCSI or Internet Small Computer System Interface is a standard that allows the iSCSI protocol traditionally used for local storage to be sent over IP networks. Essentially, it enables servers to access storage devices as if they were directly attached even though they are located remotely on the network.  This means it can leverage standard ethernet infrastructure, making it a cost-effective solution for creating high performance, centralized storage accessible over an existing network. It's particularly useful for server virtualization and database environments where block-level access is preferred. While iSCSI provides block-level access over standard IP, for environments demanding even higher performance, lower latency, and greater dedicated throughput, a specialized network is often deployed.  08:47 Nikita: And what's this specialized network called? Orlando: Storage Area Network or SAN. A Storage Area Network or SAN is a high-speed network specifically designed to provide block-level access to consolidated shared storage. Unlike NAS, which provides file level access, a SAN presents a storage volumes to servers as if they were local disks, allowing for very high performance for applications like databases and virtualized environments. While iSCSI SANs use ethernet, many high-performance SANs utilize fiber channel for even faster and more reliable data transfer, making them a cornerstone of enterprise data centers where performance and availability are paramount. 09:42 Oracle University's Race to Certification 2025 is your ticket to free training and certification in today's hottest technology. Whether you're starting with Artificial Intelligence, Oracle Cloud Infrastructure, Multicloud, or Oracle Data Platform, this challenge covers it all! Learn more about your chance to win prizes and see your name on the Leaderboard by visiting education.oracle.com/race-to-certification-2025. That's education.oracle.com/race-to-certification-2025. 10:26 Nikita: Welcome back! Orlando, are there any other popular storage paradigms we should know about? Orlando: Beyond file level and block level storage, cloud environments have popularized another flexible and highly scalable storage paradigm, object storage.  Object storage is a modern approach to storing data, treating each piece of data as a distinct, self-contained unit called an object. Unlike file systems that organize data in a hierarchy or block storage that breaks data into fixed size blocks, object storage manages data as flat, unstructured objects. Each object is stored with unique identifiers and rich metadata, making it highly scalable and flexible for massive amounts of data. This service handles the complexity of storage, providing access to vast repositories of data. Object storage is ideal for use cases like cloud-native applications, big data analytics, content distribution, and large-scale backups thanks to its immense scalability, durability, and cost effectiveness. While object storage is excellent for frequently accessed data in rapidly growing data sets, sometimes data needs to be retained for very long periods but is accessed infrequently. For these scenarios, a specialized low-cost storage tier, known as archive storage, comes into play. 12:02 Lois: And what's that exactly? Orlando: Archive storage is specifically designed for long-term backup and retention of data that you rarely, if ever, access. This includes critical information, like old records, compliance data that needs to be kept for regulatory reasons, or disaster recovery backups. The key characteristics of archive storage are extremely low cost per gigabyte, achieved by optimizing for infrequent access rather than speed. Historically, tape backup systems were the common solution for archiving, where data from a data center is moved to tape. In modern cloud environments, this has evolved into cloud backup solutions. Cloud-based archiving leverages high-cost, effective during cloud storage tiers that are purpose built for long term retention, providing a scalable and often more reliable alternative to physical tapes. 13:05 Lois: Thank you, Orlando, for taking the time to talk to us about the hardware and software layers of cloud data centers. This information will surely help our listeners to make informed decisions about cloud infrastructure to meet their workload needs in terms of performance, scalability, cost, and management.  Nikita: That's right, Lois. And if you want to learn more about what we discussed today, head over to mylearn.oracle.com and search for the Cloud Tech Jumpstart course.  Lois: In our next episode, we'll take a look at more of the fundamental concepts within modern cloud environments, such as Hypervisors, Virtualization, and more. I can't wait to learn more about it. Until then, this is Lois Houston… Nikita: And Nikita Abraham, signing off! 13:47 That's all for this episode of the Oracle University Podcast. If you enjoyed listening, please click Subscribe to get all the latest episodes. We'd also love it if you would take a moment to rate and review us on your podcast app. See you again on the next episode of the Oracle University Podcast.  
    --------  
    14:16
  • Cloud Data Centers: Core Concepts - Part 1
    Curious about what really goes on inside a cloud data center?   In this episode, Lois Houston and Nikita Abraham chat with Principal OCI Instructor Orlando Gentil about how cloud data centers are transforming the way organizations manage technology.   They explore the differences between traditional and cloud data centers, the roles of CPUs, GPUs, and RAM, and why operating systems and remote access matter more than ever.   Cloud Tech Jumpstart: https://mylearn.oracle.com/ou/course/cloud-tech-jumpstart/152992   Oracle University Learning Community: https://education.oracle.com/ou-community   LinkedIn: https://www.linkedin.com/showcase/oracle-university/   X: https://x.com/Oracle_Edu   Special thanks to Arijit Ghosh, David Wright, Kris-Ann Nansen, Radhika Banka, and the OU Studio Team for helping us create this episode. ------------------------------------- Episode Transcript: 00:00 Welcome to the Oracle University Podcast, the first stop on your cloud journey. During this series of informative podcasts, we'll bring you foundational training on the most popular Oracle technologies. Let's get started! 00:25 Lois: Hello and welcome to the Oracle University Podcast! I'm Lois Houston, Director of Innovation Programs with Oracle University, and with me is Nikita Abraham, Team Lead: Editorial Services.   Nikita: Hi everyone! Today, we're covering the fundamentals you need to be successful in a cloud environment. If you're new to cloud, coming from a SaaS environment, or planning to move from on-premises to the cloud, you won't want to miss this. With us today is Orlando Gentil, Principal OCI Instructor at Oracle University. Hi Orlando! Thanks for joining us.   01:01 Lois: So Orlando, we know that Oracle has been a pioneer of cloud technologies and has been pivotal in shaping modern cloud data centers, which are different from traditional data centers. For our listeners who might be new to this, could you tell us what a traditional data center is?  Orlando: A traditional data center is a physical facility that houses an organization's mission critical IT infrastructure, including servers, storage systems, and networking equipment, all managed on site.   01:32 Nikita: So why would anyone want to use a cloud data center?  Orlando: The traditional model requires significant upfront investment in physical hardware, which you are then responsible for maintaining along with the underlying infrastructure like physical security, HVAC, backup power, and communication links.  In contrast, cloud data centers offer a more agile approach. You essentially rent the infrastructure you need, paying only for what you use. In the traditional data center, scaling resources up and down can be a slow and complex process.  On cloud data centers, scaling is automated and elastic, allowing resources to adjust dynamically based on demand. This shift allows business to move their focus from the constant upkeep of infrastructure to innovation and growth.  The move represents a shift from maintenance to momentum, enabling optimized costs and efficient scaling. This fundamental shift is how IT infrastructure is managed and consumed, and precisely what we mean by moving to the cloud.  02:39 Lois: So, when we talk about moving to the cloud, what does it really mean for businesses today?  Orlando: Moving to the cloud represents the strategic transition from managing your own on-premise hardware and software to leveraging internet-based computing services provided by a third-party.  This involves migrating your applications, data, and IT operations to a cloud environment. This transition typically aims to reduce operational overhead, increase flexibility, and enhance scalability, allowing organizations to focus more on their core business functions.    03:17 Nikita: Orlando, what's the "brain" behind all this technology?  Orlando: A CPU or Central Processing Unit is the primary component that performs most of the processing inside the computer or server. It performs calculations handling the complex mathematics and logic that drive all applications and software.  It processes instructions, running tasks, and operations in the background that are essential for any application. A CPU is critical for performance, as it directly impacts the overall speed and efficiency of the data center.  It also manages system activities, coordinating user input, various application tasks, and the flow of data throughout the system. Ultimately, the CPU drives data center workloads from basic server operations to powering cutting edge AI applications.  04:10 Lois: To better understand how a CPU achieves these functions and processes information so efficiently, I think it's important for us to grasp its fundamental architecture. Can you briefly explain the fundamental architecture of a CPU, Orlando?  Orlando: When discussing CPUs, you will often hear about sockets, cores, and threads. A socket refers to the physical connection on the motherboard where a CPU chip is installed.  A single server motherboard can have one or more sockets, each holding a CPU. A core is an independent processing unit within a CPU. Modern CPUs often have multiple cores, enabling them to handle several instructions simultaneously, thus increasing processing power.  Think of it as having multiple mini CPUs on a single chip. Threads are virtual components that allow a single CPU core to handle multiple sequence of instructions or threads concurrently. This technology, often called hyperthreading, makes a single core appear as two logical processors to the operating system, further enhancing efficiency.  05:27 Lois: Ok. And how do CPUs process commands?  Orlando: Beyond these internal components, CPUs are also designed based on different instruction set architectures which dictate how they process commands.   CPU architectures are primarily categorized in two designs-- Complex Instruction Set Computer or CISC and Reduced Instruction Set Computer or RISC. CISC processors are designed to execute complex instructions in a single step, which can reduce the number of instructions needed for a task, but often leads to a higher power consumption.  These are commonly found in traditional Intel and AMD CPUs. In contrast, RISC processors use a simpler, more streamlined set of instructions. While this might require more steps for a complex task, each step is faster and more energy efficient. This architecture is prevalent in ARM-based CPUs.  06:34 Are you looking to boost your expertise in enterprise AI? Check out the Oracle AI Agent Studio for Fusion Applications Developers course and professional certification—now available through Oracle University. This course helps you build, customize, and deploy AI Agents for Fusion HCM, SCM, and CX, with hands-on labs and real-world case studies. Ready to set yourself apart with in-demand skills and a professional credential? Learn more and get started today! Visit mylearn.oracle.com for more details.     07:09 Nikita: Welcome back! We were discussing CISC and RISC processors. So Orlando, where are they typically deployed? Are there any specific computing environments and use cases where they excel?  Orlando: On the CISC side, you will find them powering enterprise virtualization and server workloads, such as bare metal hypervisors in large databases where complex instructions can be efficiently processed. High performance computing that includes demanding simulations, intricate analysis, and many traditional machine learning systems.  Enterprise software suites and business applications like ERP, CRM, and other complex enterprise systems that benefit from fewer steps per instruction. Conversely, RISC architectures are often preferred for cloud-native workloads such as Kubernetes clusters, where simpler, faster instructions and energy efficiency are paramount for distributed computing.  Mobile device management and edge computing, including cell phones and IoT devices where power efficiency and compact design are critical. Cost optimized cloud hosting supporting distributed workloads where the cumulative energy savings and simpler design lead to more economical operations.  The choice between CISC and RISC depends heavily on the specific workload and performance requirements. While CPUs are versatile generalists, handling a broad range of tasks, modern data centers also heavily rely on another crucial processing unit for specialized workloads.  08:54 Lois: We've spoken a lot about CPUs, but our conversation would be incomplete without understanding what a Graphics Processing Unit is and why it's important. What can you tell us about GPUs, Orlando?  Orlando: A GPU or Graphics Processing Unit is distinct from a CPU. While the CPU is a generalist excelling at sequential processing and managing a wide variety of tasks, the GPU is a specialist.  It is designed specifically for parallel compute heavy tasks. This means it can perform many calculations simultaneously, making it incredibly efficient for workloads like rendering graphics, scientific simulations, and especially in areas like machine learning and artificial intelligence, where massive parallel computation is required.  In the modern data center, GPUs are increasingly vital for accelerating these specialized, data intensive workloads.   09:58 Nikita: Besides the CPU and GPU, there's another key component that collaborates with these processors to facilitate efficient data access. What role does Random Access Memory play in all of this?  Orlando: The core function of RAM is to provide faster access to information in use. Imagine your computer or server needing to retrieve data from a long-term storage device, like a hard drive. This process can be relatively slow.  RAM acts as a temporary high-speed buffer. When your CPU or GPU needs data, it first checks RAM. If the data is there, it can be accessed almost instantaneously, significantly speeding up operations.  This rapid access to frequently used data and programming instructions is what allows applications to run smoothly and systems to respond quickly, making RAM a critical factor in overall data center performance.  While RAM provides quick access to active data, it's volatile, meaning data is lost when power is off, or persistent data storage, the information that needs to remain available even after a system shut down.   11:14 Nikita: Let's now talk about operating systems in cloud data centers and how they help everything run smoothly. Orlando, can you give us a quick refresher on what an operating system is, and why it is important for computing devices?  Orlando: At its core, an operating system, or OS, is the fundamental software that manages all the hardware and software resources on a computer. Think of it as a central nervous system that allows everything else to function.  It performs several critical tasks, including managing memory, deciding which programs get access to memory and when, managing processes, allocating CPU time to different tasks and applications, managing files, organizing data on storage devices, handling input and output, facilitate communication between the computer and its peripherals, like keyboards, mice, and displays. And perhaps, most importantly, it provides the user interface that allows us to interact with the computer.  12:19 Lois: Can you give us a few examples of common operating systems?  Orlando: Common operating system examples you are likely familiar with include Microsoft Windows and MacOS for personal computers, iOS and Android for mobile devices, and various distributions of Linux, which are incredibly prevalent in servers and increasingly in cloud environments.  12:41 Lois: And how are these operating systems specifically utilized within the demanding environment of cloud data centers?  Orlando: The two dominant operating systems in data centers are Linux and Windows. Linux is further categorized into enterprise distributions, such as Oracle Linux or SUSE Linux Enterprise Server, which offer commercial support and stability, and community distributions, like Ubuntu and CentOS, which are developed and maintained by communities and are often free to use.  On the other side, we have Windows, primarily represented by Windows Server, which is Microsoft's server operating system known for its robust features and integration with other Microsoft products. While both Linux and Windows are powerful operating systems, their licensing modes can differ significantly, which is a crucial factor to consider when deploying them in a data center environment.  13:43 Nikita: In what way do the licensing models differ?  Orlando: When we talk about licensing, the differences between Linux and Windows become quite apparent. For Linux, Enterprise Distributions come with associated support fees, which can be bundled into the initial cost or priced separately. These fees provide access to professional support and updates. On the other hand, Community Distributions are typically free of charge, with some providers offering basic community-driven support.  Windows server, in contrast, is a commercial product. Its license cost is generally included in the instance cost when using cloud providers or purchased directly for on-premise deployments. It's also worth noting that some cloud providers offer a bring your own license, or BYOL program, allowing organizations to use their existing Windows licenses in the cloud, which can sometimes provide cost efficiencies.  14:46 Nikita: Beyond choosing an operating system, are there any other important aspects of data center management?  Orlando: Another critical aspect of data center management is how you remotely access and interact with your servers. Remote access is fundamental for managing servers in a data center, as you are rarely physically sitting in front of them. The two primary methods that we use are SSH, or secure shell, and RDP, remote desktop.  Secure shell is widely used for secure command line access for Linux servers. It provides an encrypted connection, allowing you to execute commands, transfer files, and manage your servers securely from a remote location. The remote desktop protocol is predominantly used for graphical remote access to Windows servers. RDP allows you to see and interact with the server's desktop interface, just as if you were sitting directly in front of it, making it ideal for tasks that require a graphical user interface.  15:54 Lois: Thank you so much, Orlando, for shedding light on this topic.    Nikita: Yeah, that's a wrap for today! To learn more about what we discussed, head over to mylearn.oracle.com and search for the Cloud Tech Jumpstart course. In our next episode, we'll take a close look at how data is stored and managed. Until then, this is Nikita Abraham…   Lois: And Lois Houston, signing off!   16:16 That's all for this episode of the Oracle University Podcast. If you enjoyed listening, please click Subscribe to get all the latest episodes. We'd also love it if you would take a moment to rate and review us on your podcast app. See you again on the next episode of the Oracle University Podcast.
    --------  
    16:45

More Education podcasts

About Oracle University Podcast

Oracle University Podcast delivers convenient, foundational training on popular Oracle technologies such as Oracle Cloud Infrastructure, Java, Autonomous Database, and more to help you jump-start or advance your career in the cloud.
Podcast website

Listen to Oracle University Podcast, Speaking Irish and many other podcasts from around the world with the radio.net app

Get the free radio.net app

  • Stations and podcasts to bookmark
  • Stream via Wi-Fi or Bluetooth
  • Supports Carplay & Android Auto
  • Many other app features

Oracle University Podcast: Podcasts in Family

Social
v7.23.11 | © 2007-2025 radio.de GmbH
Generated: 11/6/2025 - 2:20:12 AM