

#287: 2025 Year in Review
23/12/2025 | 1h
It's the most…won…derful…tiiiiime…of the year! And by that, we mean it's the time of the year when we sit back, look at each other, and ask, "Where did all the time go?!" We brought back a very special someone for this episode as we collectively reflected on the year—show highlights (and what about those shows have stuck with us), industry reflections, and a little shameless shilling for Tim's book (are you still short on a few stocking stuffers? Order now…!). This episode's Measurement Bite from show sponsor Recast is a brief explanation of Granger causality (and how it's NOT actually a causal measure!) from Michael Kaminsky! For complete show notes, including links to items mentioned in this episode and a transcript of the show, visit the show page.

#286: Metrics Layers. Data Dictionaries. Maybe It's All Semantic (Layers)? With Cindi Howson
09/12/2025 | 55 mins.
Semantic layers are having something of a moment, but they're not actually new as a concept. Ever since the first database table was designed with cryptic field names that no business user could possibly understand, there's been a need for some form of mapping and translation. Should every company be considering employing a semantic layer? Is the idea of a single, comprehensive semantic layer within an organization a monolithic concept that is doomed to fail? These questions and more get bandied about on this episode, where we were joined by industry legend Cindi Howson, Chief Data & AI Strategy Officer at Thoughtspot. For complete show notes, including links to items mentioned in this episode and a transcript of the show, visit the show page. This episode's Measurement Bite from show sponsor Recast is an explanation of multicollinearity from Michael Kaminsky!

#285: Our Prior Is That Many Analysts Are Confounded by Bayesian Statistics
25/11/2025 | 1h 6 mins.
Before you listen to this episode, can you quantify how useful you expect it to be? That's a prior! And "priors" is a word that gets used a lot in this discussion with Michael Kaminsky as we try to demystify the world of Bayesian statistics. Luckily, you can just listen to the episode once and then update your expectation—no need to simulate listening to the show a few thousand times or crunch any numbers whatsoever. The most important takeaway is that you'll know you've achieved Bayesian clarity when you come to realize that human beings are naturally Bayesian, and the underlying principles behind Bayesian statistics are inherently intuitive. This episode's Measurement Bite from show sponsor Recast is a brief explanation of statistical significance (and why shorthanding it is problematic…and why confidence intervals are generally more practically useful in business than p-values) from Michael Kaminsky! For complete show notes, including links to items mentioned in this episode and a transcript of the show, visit the show page.

#284: I Used to Think...But Not Any More
11/11/2025 | 1h 7 mins.
As the world turns, a couple of things happen: 1) we grow and learn, and 2) the world changes. On this episode, inspired by a job interview question, the hosts walked through a range of thoughts and beliefs they had at one time that they no longer have today. Analytics intake forms are good…or bad? Analytics centers of excellence are the sign of a mature organization…or they're just one of many potential options? Privacy concerns are something no one really cares about…or they are something everyone cares deeply about? Voices were raised. Light profanity was employed. Laughter ensued. This episode's Measurement Bite from show sponsor Recast is a brief explanation of statistical significance (and why shorthanding it is problematic…and why confidence intervals are often more practically useful in business than p-values) from Michael Kaminsky. For complete show notes, including links to items mentioned in this episode and a transcript of the show, visit the show page.

#283: Good Things (Can) Come in Small Datasets with Joe Domaleski
28/10/2025 | 1h 12 mins.
Does size matter? When it comes to datasets, the conventional wisdom seems to be a resounding, "Yes!" But what about small datasets? Small- and mid-sized businesses and nonprofits, especially, often have limited web traffic, small email lists, CRM systems that can comfortably operate under the free tier, and lead and order counts that don't lend themselves to "big data" descriptors. Even large enterprises have scenarios where some datasets easily fit into Google Sheets with limited scrolling required. Should this data be dismissed out of hand, or should it be treated as what it is: potentially useful? Joe Domaleski from Country Fried Creative works with a lot of businesses that are operating in the small data world, and he was so intrigued by the potential of putting data to use on behalf of his clients that he's mid-way through getting a Master's degree in Analytics from Georgia Tech! He wrote a really useful article about the ins and outs of small data, so we brought him on for a discussion on the topic! This episode's Measurement Bite from show sponsor Recast is an explanation of synthetic controls and how they can be used as counterfactuals from Michael Kaminsky! For complete show notes, including links to items mentioned in this episode and a transcript of the show, visit the show page.



The Analytics Power Hour